Publications
[35] Nie, W.; Yan, C.; Yang, L.; Roldin, P.; Liu, Y.; Vogel, A. L.; … Wang, M.; … Ding, A. (2023). NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere. Nature Communications, 14, 3347. [DOI]
[34] Surdu, M.; Lamkaddam, H.; Wang, D. S.; Bell, D. M.; Xiao, M.; … Wang, M.; … El Haddad, I. (2023). Molecular understanding of the enhancement in organic aerosol mass at high relative humidity. Environ. Sci. Technol., 57, 2297–2309. [DOI]
[33] Finkenzeller, H.; Iyer, S.; He, X.-C.; Simon, M.; Koenig, T. K.; … Wang, M.; … Volkamer, R. (2022). The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nature Chemistry, 15, 129–135. [DOI]
[32] Shen, J.; Scholz, W.; He, X.-C.; Zhou, P.; Marie, G.; Wang, M.; … Worsnop, D. R. (2022). High gas-phase methanesulfonic acid production in the OH-Initiated oxidation of dimethyl sulfide at low temperatures. Environ. Sci. Technol., 56, 13931–13944.[DOI]
[31] Stolzenburg, D.; Wang, M.; Schervish, M.; Donahue, N. M. (2022). Tutorial: Dynamic organic growth modeling with a volatility basis set. J. Aero. Sci., 106063.[DOI]
[30] Wang, M.; Xiao, M.; Bertozzi, B; Marie, G; Rörup, B; Schulze, B; … Donahue, N. M. (2022). Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 605, 483–489.[DOI]
[29] Caudillo, L.; Surdu, M.; Lopez, B.; Wang, M.; Thoma, M.; Bräkling, S.; … Curtius, J. (2022). An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles. Atmos. Chem. Phys., 23, 6613–6631.[DOI]
[28] Humes, M. B.; Wang, M.; Kim, S.; Machesky, J. E.; Gentner, D. R.; Robinson, A. L.; … Presto, A. A. (2022). Limited secondary organic aerosol production from acyclic oxygenated volatile chemical products. Environ. Sci. Technol., 56, 4806–4815.[DOI]
[27] Nie, W.; Yan, C.; Huang, D.; Wang, Z.; Liu, Y.; … Wang, M.; … Ding, A. (2022). Secondary organic aerosol formed by condensing anthropogenic vapours over China’s megacities. Nature Geoscience, 15, 255–261.[DOI]
[26] Marten, R.; Xiao, M.; Rörup, B; Wang, M.; Kong, W.; He, X.-C.; … El Haddad, I. (2022). Survival of newly formed particles in haze conditions. Environ. Sci.: Atmos., 2, 491–499.[DOI]
[25] Caudillo, L.; Rörup, B.; Heinritzi, M.; Marie, G.; Simon, M.; … Wang, M.; … Curtius, J. (2021). Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmos. Chem. Phys., 21, 17099–17114.[DOI]
[24] Wang, Y.; Clusius, P.; Yan, C.; Dällenbach, K.; Yin, R.; Wang, M.; … Kulmala, M. (2021). Molecular composition of oxygenated organic molecules and their contributions to organic aerosol in Beijing. Environ. Sci. Technol., 56, 770–778.[DOI]
[23] Qiao, X.; Yan, C.; Li, X.; Guo, Y.; Deng, C.; …Wang, M.; … Jiang, J. (2021). Contribution of atmospheric oxygenated organic compounds to particle growth in an urban environment. Environ. Sci. Technol., 55, 13646–13656.[DOI]
[22] Xiao, M.; Hoyle, C. R.; Dada, L.; Stolzenburg, D.; Kürten, A.; Wang, M.; … Baltensperger, U. (2021). The driving factors of new particle formation and growth in the polluted boundary layer. Atmos. Chem. Phys., 21, 14275–14291.[DOI]
[21] Lee, C. P.; Surdu, M.; Bell, D. M.; Lamkaddam, H.; Wang, M.; Ataei, F.; … El Haddad, I. (2021). Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization. Atmos. Meas. Tech., 14, 5913–5923.[DOI]
[20] Wang, M.; He, X.-C.; Finkenzeller, H.; Iyer, S.; Chen, D.; Shen, J.; … Sipilä, M. (2021). Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers. Atmos. Meas. Tech., 14, 4187–4202.[DOI]
[19] He, X.-C.; Tham, Y. J.; Dada, L.; Wang, M.; Finkenzeller, H.; Stolzenburg, D.; … Sipilä, M. (2021). Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 371, 589–595.[DOI]
[18] He, X.-C.; Iyer, S.; Sipilä, M.; Ylisirniö, A.; Peltola, M.; … Wang, M.; … Kulmala, M. (2020). Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Sci. Tech., 55, 231–242.[DOI]
[17] Surdu, M.; Pospisilova, V.; Xiao, M.; Wang, M.; Mentler, B.; Simon, M.; … Lamkaddam, H. (2021). Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environ. Sci.: Atmos., 1, 434–448.[DOI]
[16] Heinritzi, M.; Dada, L.; Simon, M.; Stolzenburg, D.; Wagner, A. C.; … Wang, M.; … Curtius, J. (2020). Molecular understanding of the suppression of new-particle formation by isoprene. Atmos. Chem. Phys., 20, 11809–11821.[DOI]
[15] Zhang, B.; Hu, X.; Yao, L.; Wang, M.; Yang, G.; Lu, Y.; Liu, Y.; Wang, L. (2020). Hydroxyl radical-initiated aging of particulate squalane. Atmos. Environ., 237, 117663.[DOI]
[14] Simon, M.; Dada, L.; Heinritzi, M.; Scholz, W.; Stolzenburg, D.; … Wang, M.; … Curtius, J. (2020). Molecular understanding of new-particle formation from α-pinene between -50 and +25 °C. Atmos. Chem. Phys., 20, 9183–9207.[DOI]
[13] Stolzenburg, D.; Simon, M.; Ranjithkumar, A.; Kürten, A.; Lehtipalo, K.; … Wang, M.; … Winkler, P. M. (2020). Enhanced growth rate of atmospheric particles from sulfuric acid. Atmos. Chem. Phys., 20, 7359–7372.[DOI]
[12] Wang, M.; Chen, D.; Xiao, M.; Ye, Q.; Stolzenburg, D.; Hofbauer, V.; … Donahue, N. M. (2020). Photo-oxidation of aromatic hydrocarbons produces low-volatility organic compounds. Environ. Sci. Technol., 54, 7911–7921.[DOI]
[11] Wang, M.; Kong, W.; Marten, R.; He, X.-C.; Chen, D.; Pfeifer, J.; … Donahue, N. M. (2020). Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 581, 184–189.[DOI]
[10] Ye, Q.; Wang, M.; Hofbauer, V.; Stolzenburg, D.; Chen, D.; Schervish, M.; … Donahue, N. M. (2019). Molecular composition and volatility of nucleated particles from α-pinene oxidation between -50 °C and +25 °C. Environ. Sci. Technol., 53, 12357–12365.[DOI]
[9] Jing, W.; Liu, Q.; Wang, M.; Zhang, X.; Chen, J.; Sui, G.; Wang, L. (2019). A method for particulate matter 2.5 (PM2.5) biotoxicity assay using luminescent bacterium. Ecotox. Environ. Safe., 170, 796–803.[DOI]
[8] Lehtipalo, K.; Yan, C.; Dada, L.; Bianchi, F.; Xiao, M.; … Wang, M.; … Worsnop, D. R. (2018). Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 4, eaau5363.[DOI]
[7] Stolzenburg, D.; Fischer, L.; Vogel, A. L.; Heinritzi, M.; Schervish, M.; … Wang, M.; … Winkler, P. M. (2018). Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. P. Natl. Acad. Sci., 115, 9122–9127.[DOI]
[6] Yao, L.; Garmash, O.; Bianchi, F.; Zheng, J.; Yan, C.; … Wang, M.; … Wang, L. (2018). Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 361, 278–281.[DOI]
[5] Chen, H.; Wang, M.; Yao, L.; Chen, J.; Wang, L. (2017). Uptake of gaseous alkylamides by suspended sulfuric acid particles: Formation of ammonium/aminium salts. Environ. Sci. Technol., 51, 11710–11717.[DOI]
[4] Yao, L.; Wang, M..; Wang, X.; Liu, Y.; Chen, H.; Zheng, J.; … Wang, L. (2016). Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions. Atmos. Chem. Phys., 16, 14527–14543.[DOI]
[3] Wang, M.; Yao, L.; Zheng, J.; Wang, X.; Chen, J.; Yang, X.; Worsnop, D. R.; Donahue, N. M.; Wang, L. (2016). Reactions of atmospheric particulate stabilized Criegee intermediates lead to high-molecular-weight aerosol components. Environ. Sci. Technol., 50, 5702–5710.[DOI]
[2] Wang, X.; Rossignol, S.; Ma, Y.; Yao, L.; Wang, M.; Chen, J.; George, C.; Wang, L. (2016). Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River. Atmos. Chem. Phys., 16, 2285–2298.[DOI]
[1] Xiao, S.; Wang, M.; Yao, L.; Kulmala, M.; Zhou, B.; Yang, X.; … Wang, L. (2015). Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmos. Chem. Phys., 15, 1769–1781.[DOI]